The present database forms part of the PhD thesis:
"A remote sensing and geospatial statistical approach to understanding distribution and evolution of ignimbrites in the Central Andes with a focus on Southern Peru"
>>> Link to Map on ArcGIS Website <<<
by M. Brandmeier (2014) supervised by Prof. Dr. G. Wörner
Ignimbrites were mapped using published data (see references for each ignimbrite), remote sensing data and new data from Southern Peru. Information about age, thickness and a brief description (where available) are also included. Furthermore, the areal extent and volume for each ignimbrite were calculated (using an equal area projection) for ignimbrites lacking this information (for further information refer to Chapter IV of thesis). The option "bookmarks" allows to quickly find the most important calderas and ignimbrites (e.g. La Pacana caldera, Cerro Galán, Nazca ignimbrites...).
The map will open showing the Cerro Galán caldera and related samples. For an overview of the whole database extent, the option "overview" in the "bookmarks" can be clicked. Use the option "layers" to enable or disable layers.
Please note that this is a compilation and does not claim completeness! If you have any suggestions or want to use/edit data, please do not hesitate to contact me:
This email address is being protected from spambots. You need JavaScript enabled to view it.
References for mapping layer (and references herein):
Almendras, O., and Baldellón, E., 1997, Hoja Ollague: San Agustin, v. 5930, p. 6030.
Arnosio, M., 2010, Evidencia textural y geoquímica de mezcla de magmas en el volcán Chimpa, Puna salteña. Revista de la Asociación Geológica Argentina, 66, pp. 251–268
Arnosio, M., Becchio, R., Viramonte, J.G., Grop- pelli, G., Norini G. y Corazzato, C. 2005. Geo- logía del Complejo Volcánico Cerro Blanco (26° 45’ LS- 67° 45’ LO), Puna Austral. 16o Congreso Geológico Argentino, Actas 1: 851- 858, La Plata.
Arnosio, M., Becchio, R., Viramonte, J.G., de Silva, S. y Viramonte, J.M. 2008. Geocronolo- gía e isotopía del Complejo Volcánico Cerro Blanco: un sistema de calderas cuaternario (73-12 ka) en los Andes Centrales del sur. 17° Congreso Geológico Argentino, Actas 1: 177- 178, Jujuy.
Asociación Lagesa, C.F.G.S., 1996, Geología de los cuadrangulos de Huancapi, Chincheros, Querobamba y Chavina, Volume Boletin N° 70: Serie A: Carta Geológica Nacional, Instituto Geologico Minero y Metalurgico.
Baker, M., 1981, The nature and distribution of Upper Cenozoic ignimbrite centres in the Central Andes: Journal of Volcanology and Geothermal Research, v. 11, p. 293-315.
Baker, M.C.W. 1977, Geochronology of upper Tertiary volcanic activity in the Andes of North Chile: Geol. Rundsch., v. 66, p. 455-465.
Barke, R., Lamb, S., and MacNiocaill, C., 2007, Late Cenozoic bending of the Bolivian Andes: New paleomagnetic and kinematic constraints: Journal of geophysical research, v. 112, p. B01101.
Brandmeier, M., Mamani, M., Jicha, B., Wörner, G., Age and distribution of Neogene ignimbrites in Southern Peru as tracers for uplift, erosion and changes in the Andean drainage divide between Pacific and Atlantic Oceans, in preparation.
Caffe, P.J., Soler, M.M., Coira, B.L., Onoe, A.T., and Cordani, U.G., 2008, The Granada ignimbrite: A compound pyroclastic unit and its relationship with Upper Miocene caldera volcanism in the northern Puna: Journal of South American Earth Sciences, v. 25, p. 464-484.
Cheilletz, A., Clark, A.H., Farrar, E., Pauca, G.A., Pichavant, M., and Sandeman, H.A., 1992, Volcano-stratigraphy and 40Ar/39Ar geochronology of the Macusani ignimbrite field: monitor of the Miocene geodynamic evolution of the Andes of southeast Peru: Tectonophysics, v. 205, p. 307-327.
Choque, N.M., 1996. Hoja Volcán Putana 6026. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-41, Servicio Nacional de Geología y Minería de Bolivia.
Coira, B., Mahlburg, K., and Viramonte, J., 1993, Upper Cenozoic magmatic evolution of the Argentine Puna-A model for changing subduction geometry: International Geology Review, v. 35, p. 677-720.
De Silva, S.L., 1987. Large-volume explosive silicic volcanism in the Central Andes of North Chile. Tesis doctoral. Open University, U.K., 409 pp.
De Silva, S., 1989a, The origin and significance of crystal-rich inclusions in pumice from two Chilean ignimbrites: Geol Mag, v. 126, p. 159-175.
De Silva, S., 1991, Styles of zoning in Central Andean ignimbrites-insights into magma chamber processes: In: Andean magmatism and its tectonic setting, p. 217-232., v. 1, p. 217-232.
De Silva, S.L., 1989b, Altiplano-Puna volcanic complex of the central Andes: Geology, v. 17, p. 1102-1106.
De Silva, S.L., 1989c, Geochronology and Stratigraphy of the Ignimbrites from the 21° 30´S to 23° 30`S portion of the Central Andes of Northern Chile: J. of Volc. and Geotherm. Res., v. 37, p. 93-131.
De Silva, S.L., and Francis, P.W., 1989, Correlation of large ignimbrites - two case studies from the central Andes of Northern Chile: J. of Volc. and Geotherm. Res., v. 37, p. 133-149.
De Silva, S.L., and Gosnold, W.D., 2007, Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up: Journal of Volcanology and Geothermal Research, v. 167, p. 320-335.
Folkes, C.B., Wright, H.M., Cas, R.A., de Silva, S.L., Lesti, C., and Viramonte, J.G., 2011, A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina: Bulletin of volcanology, v. 73, p. 1427-1454.
Francis, P.W., and Baker, M.C.W., 1978, Sources of two large ignimbrites in the central andes: Some landsat evidence: Journal of Volcanology and Geothermal Research, v. 4, p. 81-87.
Francis, P.W., Baker, M. C. W. & Halls C., 1981, The Kari Kari Caldera, Bolivia, and the Cerro Rico Stock: Journal of Volcanology and Geothermal Research, v. 10, p. 113-124.
Francis, P.W., McDonough, W.F., Hammill, M., O´Callaghan, L.J., and Thorpe, R.S., 1984, The Cerro Purico shield complex, north Chile: Andean Magmatism - chemical and isotopic constraints, p. 106-123.
Francis, P.W., Thorpe, R.S., Moorbath, S., Kretzschmar, G.A., and Hammil, M., 1980, Strontium isotope evidence for crustal contamination of calc-alkaline volcanic rocks from Cerro Galan, northwestern Argentina: Earth Planet. Sci. Lett., v. 48, p. 257-267.
Galli, C., Dingman, R.J., 1962, Cuadrangulos Pica, Alca, Matilla y Chacarilla, Carta Geol. de Chile, Inst. Invest. Geol. Santiago, 3 (2, 3, 4 and 5), p. 125.
Goss, A.R., Kay, S.M., Mpodozis, C., and Singer, B.S., 2009, The Incapillo Caldera and Dome Complex (similar to 28 degrees S, Central Andes): A stranded magma chamber over a dying arc: Journal of Volcanology and Geothermal Research, v. 184, p. 389-404.
Grant, J.N., Halls, C., Salinas, W.A., and Snelling, N.J., 1979, K-Ar ages of igneous rocks and mineralization in part of the Bolivian tin belt: Economic Geology, v. 74, p. 838-851.
Gorustovich, S.A., Vullien, Aniel, R. Bustos, 1989, Uranio en relación a ignimbritas cenozoicas de la comarca Coranzulí-Ramallo, Puna Argentina. Revista Asociación Geológica Argentina, 44, pp. 175–185.
Guest, J.E., 1969, Upper Tertiary ignimbrites in the Andean Cordillera of part of the Antofagasta Province, northern Chile: Geological Society of America Bulletin, v. 80, p. 337-362.
Guzmán, S., and Petrinovic, I., 2010, The Luingo caldera: The south-easternmost collapse caldera in the Altiplano–Puna plateau, NW Argentina: Journal of Volcanology and Geothermal Research, v. 194, p. 174-188.
Guzmán, S., Petrinovic, I.A., Brod, J.A., Hongn, F.D., Seggiaro, R.E., Montero, C., Carniel, R., Dantas, E.L., and Sudo, M., 2011, Petrology of the Luingo caldera (SE margin of the Puna plateau): A middle Miocene window of the arc–back arc configuration: Journal of Volcanology and Geothermal Research, v. 200, p. 171-191.
Heidorn, R, 2002. Geodynamic evolution of the Central Andean backarc with respect to Tertiary epithermal mineralization, PhD thesis, University of Salzburg, Austria, 111 pp.
INGEMMET, 2001a, Mapa geológica del cuadrángulo de Querobamba: Lima, INGEMMWT.
INGEMMET, 2001b, Mapa Geológico del cuadrángulo de Chavina: Lima, Instituto Geológico Minero y Metalúrgico.
Jiménez, N., and López-Velásquez, S., 2008, Magmatism in the Huarina belt, Bolivia, and its geotectonic implications: Tectonophysics, v. 459, p. 85-106.
Kay, S., Coira, B., Wörner, G., Kay, R., and Singer, B., 2010, Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites: Bulletin of Volcanology, p. 1-25.
Koeppen et al., 1987. R.P. Koeppen, R.L. Smith, M.J. Kunk, A. Flores, R.G. Luedke, J.F. Sutter. The Morococala volcanics: highly peraluminous rhyolite ash flow magmatism in the Cordillera Oriental, Bolivia(abs.). Geological Society of America Abstracts with Programs, 19 (1987), p. 731.
Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E., van den Bogaard, P., and Görler, K., 1999, Incorporation of the Paleogene foreland into the Neogene Puna plateau: The Salar de Antofalla area, NW Argentina: Journal of South American Earth Sciences, v. 12, p. 157-182.
Lebti, P.P.T., J.-C.; Wörner, G.; Fornari, M., 2006, Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations: Journal of Volcanology and Geothermal Research, p. 251-275.
Lema, J.C., Ramos, W., 1996, Hoja Zapaleri 6125. Carta Geológica de Bolivia, Escala 1: 100,000, Publicación SGM Serie 1-CGB-39, Servicio Nacional de Geología y Minería. Mpodozis, C., Kay, S.M., Gardeweg, M., Coira, B., 1996. Geologı́a de la región de Ojos del Salado (Andes centrales, 27°S): implicancias de la migración hacia el este del frente volcánico Cenozoico Superior. XIII Congreso Geológico Argentino, Buenos Aires, vol. 3, pp. 539–548.
Lindsay, J.M., de Silva, S., Trumbull, R., Emmermann, R., and Wemmer, K., 2001a, La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas: Journal of Volcanology and Geothermal Research, v. 106, p. 145-173.
Lindsay, J.M., Schmitt, A.K., Trumbull, R.B., De Silva, S.L., Siebel, W., and Emmermann, R., 2001b, Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: Compositional variation of two cogenetic, large-volume felsic ignimbrites: Journal of Petrology, v. 42, p. 459-486.
Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., and Maas, R., 2002a, The geochemical variations of the upper cenozoic volcanism along the Calama–Olacapato–El Toro transversal fault system in central Andes (~ 24 S): petrogenetic and geodynamic implications: Tectonophysics, v. 345, p. 211-227.
Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., and Maas, R., 2002b, Geodynamical evolution of Central Andes at 24 S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt: Journal of Volcanology and Geothermal Research, v. 118, p. 205-228.
Lopez-Montero, C. et al. "Late Miocene–early Pliocene onset of N–S extension along the southern margin of the central Andean Puna Plateau: Evidence from magmatic, geochronological and structural observations." Tectonophysics 494.1 (2010): 48-63.
Mpodozis, C., Kay, S.M., Gardeweg, M., Coira, B., 1997. Geologı́a de la region de Valle–Ancho–Laguna Verde (Catamarca, Argentina): una ventana al basamento del extremo sur de la zona volcanica de los Andes centrales. VIII Congreso Geológico Chileno, Antofagasta, vol. 1, pp. 1689–1693.
Morgan, G.B., London, D., and Luedke, R.G., 1998, Petrochemistry of Late Miocene Peraluminous Silicic Volcanic Rocks from the Morococala Field, Bolivia: Journal of Petrology, v. 39, p. 601-632.
Naranjo, J., Cornejo, P., 1992, Hoja Salar de la Isla. Servicio Nacional de Geológ y Minera, Carta Geolgica de Chile No. 72.
Ort, M.H., 1993, Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains: Journal of Volcanology and Geothermal Research, v. 56, p. 221-252.
Ort, M.H., Coira, B.L., and Mazzoni, M.M., 1996, Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes.: Contrib. Mineral. Petrol., v. 123, p. 308-322.
Pacheco, J.Z., Ramírez, V.F., 1996. Hoja Quetena 6127. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-40, Servicio Nacional de Geología y Minería.
Pacheco, J., Ramírez, V., 1997. Hoja Soniquera 6128. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-51, Servicio Nacional de Geología y Minería.
Petrinovic, I.A., Martí, J., Aguirre-Díaz, G.J., Guzmán, S., Geyer, A., and Paz, N.S., 2010, The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance: Journal of Volcanology and Geothermal Research, v. 194, p. 15-26.
Petrinovic., I.A., 1999, La caldera de colapso del cerro Aguas Calientes, Salta, Argentina, evolución y esquema estructural, in: F. Colombo, I. Queralt, I.A. Petrinovic (Eds.), Geología de los Andes centrales meridionales: El Noroeste Argentino, Acta Geológica Hispánica, vol. 34 (2–3), pp. 243–253.
Riller, U., Petrinovic, I., Ramelow, J., Strecker, M., and Oncken, O., 2001, Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes: Earth and Planetary Science Letters, v. 188, p. 299-311.
Salisbury, M.J., Jicha, B.R., de Silva, S.L., Singer, B.S., Jimenez, N.C., and Ort, M.H., 2011, (40)Ar/(39)Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province: Geological Society of America Bulletin, v. 123, p. 821-840.
Schmitt, A.K., de Silva, S.L., Trumbull, R.B., and Emmermann, R., 2001, Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge: Contributions to Mineralogy and Petrology, v. 140, p. 680-700.
Schnurr, W.B.W., Trumbull, R.B., Clavero, J., Hahne, K., Siebel, W., and Gardeweg, M., 2007, Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W: Journal of Volcanology and Geothermal Research, v. 166, p. 17-46.
Seggiaro, R., and Aniel, B., 1989, Los ciclos piroclásticos del área Tiomayo-Coranzulí, Provincia de Jujuy: Revista de la Asociación Geológica Argentina, v. 44, p. 394-401.
Seggiaro R., 1994. Petrología, geoquímica y mecanismos de erupción del Complejo Volcánico Coranzulí. PhD Thesis. Facultad de Ciencias Naturales, Universidad Nacional de Salta. 137 pp.
Seggiaro, R., Becchio, R., Schnurr, W., Adelmann, D., Erpenstein, K., in preparation. Hoja 2569-IV, Antofalla, 1:250,000. Servicio Geológico Minero Argentino.
Seggiaro, R.; Hongn, F.; Folguerea, A. and Clavero, J. 2003: Mapa geológico de la Hoja 2769 II, Paso de San Francisco, Provincia de Catamarca, 1:250.000: Buenos Aires, Servicio Geológicco MineroArgentino, Bulletin 294.
Siebel, W., Schnurr, W.B.W., Hahne, K., Kraemer, B., Trumbull, R.B., Bogaard, P.v.d., and Emmermann, R., 2001, Geochemistry and isotope systematics of small- to medium-volume Neogene-Quarternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources: Chemical Geology, v. 171, p. 213-237.
Soler, M.M., 2005, Caldera Vilama (Mioceno Superior): Su Estratigrafía, Evolución Magmática y Relación con Eventos Ignimbríticos Tempranos. Puna Argentina – Altiplano Boliviano. PhD Thesis. Universidad Nacional de Salta. 358 pp.
Soler, M.M., Caffe, P.J., Coira, B.L., Onoe, A.T., and Kay, S.M., 2007, Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene: Journal of Volcanology and Geothermal Research, v. 164, p. 27-53.
Sparks, R.S.J., Francis, P.W., Hamer, R.D., Pankhurst, R.J., O'Callaghan, L.O., Thorpe, R.S., and Page, R., 1985a, Ignimbrites of the Cerro Galan caldera, NW Argentina: Journal of Volcanology and Geothermal Research, v. 24, p. 205-248.
Sparks, R.S.J., Francis, P.W., Hamer, R.D., Pankhurst, R.J., O'Callaghan, L.O., Thorpe, R.S., and Page, R., 1985b, Ignimbrites of the Cerro Galan caldera, NW Argentina: Journal of Volcanology and Geothermal Research, v. 24, p. 205-248.
Vatin-Perignon, N., Poupeau, G., Oliver, R.A., La Venu, A., Labrin, F., Keller, F., and Bellot-Gurlet, L., 1996, Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa: Journal of South American Earth Sciences, v. 9, p. 91-109.
Wörner, G., Hammerschmidt, K., Henjes-Kunst, F., Lezaun, J., and Wilke, H., 2000, Geochronology (Ar-40/Ar-39), K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22 degrees S): implications for magmatism and tectonic evolution of the central Andes: Revista Geologica De Chile, v. 27, p. 205-240.
Wörner, G.U., D.; Kohler, I.; Seyfried, H., 2002, Evolution of the West Andean Escarpent at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time: Tectonophysics, p. 183-198.
References for sample layer (and references herein):
Aitcheson, S.J., Harmon, R.S., Moorbath, S., Schneider, A., Soler, P., Soria-Escalante, E., Steele, G., Swainbank, I., and Wörner, G., 1995, Pb isotopes define basement domains of the Altiplano, Central Andes: Geology, p. 17.
Almendras, O., and Baldellón, E., 1997, Hoja Ollague: San Agustin, v. 5930, p. 6030.
Aquater, 1979, Estudio del potencial geotérmico de la Provincia de Jujuy, República Argentina, Fase de reconocimiento. Secretaría de Estado de Minería, Contrato Saipen Argentina S.A.-Gobierno de Jujuy, pp. 1–129.
Arnosio, M., 2010, Evidencia textural y geoquímica de mezcla de magmas en el volcán Chimpa, Puna salteña. Revista de la Asociación Geológica Argentina, 66, pp. 251–268
Asociación Lagesa, C.F.G.S., 1996, Geología de los cuadrangulos de Huancapi, Chincheros, Querobamba y Chavina, Volume Boletin N° 70: Serie A: Carta Geológica Nacional, Instituto Geologico Minero y Metalurgico.
Baker, M., 1981, The nature and distribution of Upper Cenozoic ignimbrite centres in the Central Andes: Journal of Volcanology and Geothermal Research, v. 11, p. 293-315.
Baker, M.C.W., 1977, Geochronology of upper Tertiary volcanic activity in the Andes of North Chile: Geol. Rundsch., v. 66, p. 455-465.
Barke, R., Lamb, S., and MacNiocaill, C., 2007, Late Cenozoic bending of the Bolivian Andes: New paleomagnetic and kinematic constraints: Journal of geophysical research, v. 112, p. B01101.
Barnes, V.B., Edwards, G., McLaughlin, W.A., Friedman, I., Joenjuu, O. . 1970, Macusanite occurrence, age and composition, Macusani, Peru, Geol. Soc. Am. Bull., 81, pp. 1539–1546.
Bellon, H., Lefévre, C., 1976, Données géochronologiques sur levolcanisme andin dans le sud du Pérou. Implications volcanotec-toniques, Compte Rendus de l'Académie des Sciences, Paris, 283 (1976), pp. 1–4.
Bonhomme, M.G., Audebaud, E., Vivier, G., K single bond Ar ages of Hercynian and Neogene rocks along an east west cross section in southern Peru, Comunicaciones, 35 (1985), pp. 27–30.
Bonhomme, M., and Carlier, G., 1990, Relation entre magmatisme et minéralisations dans le batholite d'Andahuaylas-Yauri (sud-Pérou): données géochronologiques.
Boudesseul, N., Fornari, N., Sempere, T., Carlier, G., Mamani, M., Ibarra, I., Meza, P., Cerpa, L., 2000, Un importante evento volcánico de edad Mioceno inferior en la zona de Descanso-Ayaviri-Condoroma-Santa Lucía (Dptos. de Cusco, Puno y Arequipa), X Congreso Peruano de Geología, Lima (8 pp.)
Brandmeier, M., Mamani, M., Jicha, B., Wörner, G., Age and distribution of Neogene ignimbrites in Southern Peru as tracers for uplift, erosion and changes in the Andean drainage divide between Pacific and Atlantic Oceans, in preparation.
Caffe, P.J., Trumbull, R.B., and Siebel, W., 2012, Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma: Lithos, v. 134, p. 179-200.
Caffe, P.J., Soler, M.M., Coira, B.L., Onoe, A.T., and Cordani, U.G., 2008, The Granada ignimbrite: A compound pyroclastic unit and its relationship with Upper Miocene caldera volcanism in the northern Puna: Journal of South American Earth Sciences, v. 25, p. 464-484.
Carlotto, V., 1998, Évolution Andine et Raccourcissement au niveau de Cuzco (13–16°S) Pérou: Enregistrement sédimentaire, chronologie, controles paléogéographiques, évolution cinématique, Ph.D. thesis, 159 pp., Univ. Joseph Fourier, Grenoble, France.
Cerpa, L., and Meza, P., 2001, Las cuencas neogenas del sur del Perú: La cuenca Descanso-Yauri (Mioceno). Evolución sedimentológica y tectónica, Tesis de grado thesis, 114 pp., Univ. Nac. San Antonio Abad del Cusco, Cuzco, Bolivia.
Cheilletz, A., Clark, A.H., Farrar, E., Pauca, G.A., Pichavant, M., and Sandeman, H.A., 1992, Volcano-stratigraphy and 40Ar/39Ar geochronology of the Macusani ignimbrite field: monitor of the Miocene geodynamic evolution of the Andes of southeast Peru: Tectonophysics, v. 205, p. 307-327.
Choque, N.M., 1996. Hoja Volcán Putana 6026. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-41, Servicio Nacional de Geología y Minería de Bolivia.
Cobbing E. J., Pitcher, W. S., Wilson, J. J., Baldock, J. W., Taylor, W. P., McCourt, W., Snelling, N. J., 1981. The geology of the Western Cordillera of north Peru. Institute of Geological Sciences, Overseas Memoir 5. HMSO.
Coira, B., Mahlburg, K., and Viramonte, J., 1993, Upper Cenozoic magmatic evolution of the Argentine Puna-A model for changing subduction geometry: International Geology Review, v. 35, p. 677-720.
Clark, R.N.G., A.J.; Swayze, G.A., 1990, Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-spares algorithm simultaneously fit to multiple spectral features from multiple materials, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Volume 90-54, JPL Publications, p. 176-186.
De Silva, S.L., 1987. Large-volume explosive silicic volcanism in the Central Andes of North Chile. Tesis doctoral. Open University, U.K., 409 pp.
De Silva, S., 1989a, The origin and significance of crystal-rich inclusions in pumice from two Chilean ignimbrites: Geol Mag, v. 126, p. 159-175.
De Silva, S., 1991, Styles of zoning in Central Andean ignimbrites-insights into magma chamber processes: In: Andean magmatism and its tectonic setting, p. 217-232., v. 1, p. 217-232.
De Silva, S.L., 1989b, Altiplano-Puna volcanic complex of the central Andes: Geology, v. 17, p. 1102-1106.
De Silva, S.L., 1989c, Geochronology and Stratigraphy of the Ignimbrites from the 21° 30´S to 23° 30`S portion of the Central Andes of Northern Chile: J. of Volc. and Geotherm. Res., v. 37, p. 93-131.
De Silva, S.L., and Francis, P.W., 1989, Correlation of large ignimbrites - two case studies from the central Andes of Northern Chile: J. of Volc. and Geotherm. Res., v. 37, p. 133-149.
De Silva, S.L., and Gosnold, W.D., 2007, Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up: Journal of Volcanology and Geothermal Research, v. 167, p. 320-335.
de los Rios, H.C., Noble, D.C., and McKee, E.H., 1990, Geologic setting and epithermal silver veins of the Arcata District, southern Peru: Economic Geology, v. 85, p. 1473-1490
E. Farrar, D.C. Noble, 1976, Timing of late deformation in the Andes of Peru, Bull. Geol. Soc. Am., 87, pp. 1247–1250.
Folkes, C.B., Wright, H.M., Cas, R.A., De Silva, S.L., Lesti, C., and Viramonte, J.G., 2011, A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina: Bulletin of volcanology, v. 73, p. 1427-1454.
Fornari, D.J., Ryan, W.B.F., Fox, P.J., 1984,The evolution of craters and calderas on young seamounts: insights from sea MARC 1 and SEABEAM sonar surveys of a small seamount group near the axis of the East Pacific Rise at 10°N, J. Geophys. Res., 89, pp. 11069–11083.
Francis, P.W., and Baker, M.C.W., 1978, Sources of two large ignimbrites in the central andes: Some landsat evidence: Journal of Volcanology and Geothermal Research, v. 4, p. 81-87.
Francis, P.W., Baker, M. C. W. & Halls C., 1981, The Kari Kari Caldera, Bolivia, and the Cerro Rico Stock: Journal of Volcanology and Geothermal Research, v. 10, p. 113-124.
Francis, P.W., McDonough, W.F., Hammill, M., O´Callaghan, L.J., and Thorpe, R.S., 1984, The Cerro Purico shield complex, north Chile: Andean Magmatism - chemical and isotopic constraints, p. 106-123.
Francis, P.W., Thorpe, R.S., Moorbath, S., Kretzschmar, G.A., and Hammil, M., 1980, Strontium isotope evidence for crustal contamination of calc-alkaline volcanic rocks from Cerro Galan, northwestern Argentina: Earth Planet. Sci. Lett., v. 48, p. 257-267.
Galli, C., Dingman, R.J., 1962, Cuadrangulos Pica, Alca, Matilla y Chacarilla, Carta Geol. de Chile, Inst. Invest. Geol. Santiago, 3 (2, 3, 4 and 5), p. 125.
Goss, A.R., Kay, S.M., Mpodozis, C., and Singer, B.S., 2009, The Incapillo Caldera and Dome Complex (similar to 28 degrees S, Central Andes): A stranded magma chamber over a dying arc: Journal of Volcanology and Geothermal Research, v. 184, p. 389-404.
Grant, J.N., Halls, C., Salinas, W.A., and Snelling, N.J., 1979, K-Ar ages of igneous rocks and mineralization in part of the Bolivian tin belt: Economic Geology, v. 74, p. 838-851.
Gorustovich, S.A., Vullien, Aniel, R. Bustos, 1989, Uranio en relación a ignimbritas cenozoicas de la comarca Coranzulí-Ramallo, Puna Argentina. Revista Asociación Geológica Argentina, 44, pp. 175–185.
Guest, J.E., 1969, Upper Tertiary ignimbrites in the Andean Cordillera of part of the Antofagasta Province, northern Chile: Geological Society of America Bulletin, v. 80, p. 337-362.
Guzmán, S., and Petrinovic, I., 2010, The Luingo caldera: The south-easternmost collapse caldera in the Altiplano–Puna plateau, NW Argentina: Journal of Volcanology and Geothermal Research, v. 194, p. 174-188.
Guzmán, S., Petrinovic, I.A., Brod, J.A., Hongn, F.D., Seggiaro, R.E., Montero, C., Carniel, R., Dantas, E.L., and Sudo, M., 2011, Petrology of the Luingo caldera (SE margin of the Puna plateau): A middle Miocene window of the arc–back arc configuration: Journal of Volcanology and Geothermal Research, v. 200, p. 171-191.
Hartenberger, J.-L., Mégard, F., and Sigie, B., 1984, Faunules à rongeurs de l'Oligocène inférieur à Lircay (Andes du Pérou Central): datation d'un épisode karstique; intérêt paléobiogéographique des remplissages tertiaires en Amérique du Sud: Comptes-rendus des séances de l'Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l'univers, sciences de la terre, v. 299, p. 565-568.
Haschke, M., Siebel, W., Günther, A., Scheuber, E., 2002. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°S–26°S). Journal of Geophysical Research, 107: doi:10.1029/2001JB000328.
Heidorn, R, 2002. Geodynamic evolution of the Central Andean backarc with respect to Tertiary epithermal mineralization, PhD thesis, University of Salzburg, Austria, 111 pp.
Huaman, D., 1985, Evolution Tectonique Cénozoique et Néotectonique du Piémont Pacifique dans la Région d'Arequipa (Andes du Sud du Pérou), University of Paris-Sud, Orsay, p. 220 Unpublished thesis
INGEMMET, 2001a, Mapa geológica del cuadrángulo de Querobamba: Lima, INGEMMWT.
INGEMMET, 2001b, Mapa Geológico del cuadrángulo de Chavina: Lima, Instituto Geológico Minero y Metalúrgico.
Jiménez, N., and López-Velásquez, S., 2008, Magmatism in the Huarina belt, Bolivia, and its geotectonic implications: Tectonophysics, v. 459, p. 85-106.
Kay, S., Coira, B., Wörner, G., Kay, R., and Singer, B., 2010, Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites: Bulletin of Volcanology, p. 1-25.
Klinck, B.A., Ellison, R.A., Hawkins, M.P., 1986, The Geology of the Cordillera Occidental and Altiplano West of Lake Titicaca, Southern Peru, Overseas Division, Open File ReportBritish Geological Survey, p. 353
Koeppen et al., 1987. R.P. Koeppen, R.L. Smith, M.J. Kunk, A. Flores, R.G. Luedke, J.F. Sutter. The Morococala volcanics: highly peraluminous rhyolite ash flow magmatism in the Cordillera Oriental, Bolivia (abs.). Geological Society of America Abstracts with Programs, 19 (1987), p. 731.
Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E., van den Bogaard, P., and Görler, K., 1999, Incorporation of the Paleogene foreland into the Neogene Puna plateau: The Salar de Antofalla area, NW Argentina: Journal of South American Earth Sciences, v. 12, p. 157-182.
Lebti, P.P.T., J.-C.; Wörner, G.; Fornari, M., 2006, Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations: Journal of Volcanology and Geothermal Research, p. 251-275.
Lema, J.C., Ramos, W., 1996, Hoja Zapaleri 6125. Carta Geológica de Bolivia, Escala 1: 100,000, Publicación SGM Serie 1-CGB-39, Servicio Nacional de Geología y Minería. Mpodozis, C., Kay, S.M., Gardeweg, M., Coira, B., 1996. Geologı́a de la región de Ojos del Salado (Andes centrales, 27°S): implicancias de la migración hacia el este del frente volcánico Cenozoico Superior. XIII Congreso Geológico Argentino, Buenos Aires, vol. 3, pp. 539–548.
Lindsay, J.M., De Silva, S., Trumbull, R., Emmermann, R., and Wemmer, K., 2001a, La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas: Journal of Volcanology and Geothermal Research, v. 106, p. 145-173.
Lindsay, J.M., Schmitt, A.K., Trumbull, R.B., De Silva, S.L., Siebel, W., and Emmermann, R., 2001b, Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: Compositional variation of two cogenetic, large-volume felsic ignimbrites: Journal of Petrology, v. 42, p. 459-486.
Mamani, M., Tassara, A., and Wörner, G., 2008, Composition and structural control of crustal domains in the central Andes: Geochemistry, Geophysics, Geosystems, v. 9, p. Q03006.
Mamani, M.W., G.; Sempere, T., 2009, Geochemical variations in igneous rocks of the Central Andean orocline (13° to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin.
Martinez, W., Cervantes,J., 2003, Mapa de rocas igneas del sur de Peru, nuevos datos geocronometricos, geoquimicos y estructurales entre los paralelos 16° y 18°30' latitud sur, INGEMMET.
Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., and Maas, R., 2002a, The geochemical variations of the upper cenozoic volcanism along the Calama–Olacapato–El Toro transversal fault system in central Andes (~ 24 S): petrogenetic and geodynamic implications: Tectonophysics, v. 345, p. 211-227.
Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., and Maas, R., 2002b, Geodynamical evolution of Central Andes at 24 S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt: Journal of Volcanology and Geothermal Research, v. 118, p. 205-228.
McKee, E.H., 1979, Ash-flow sheets and calderas: Their genetic relationship to ore deposits in Nevada: Geological Society of America Special Papers, v. 180, p. 205-211.
McKEE, E.H., and Noble, D.C., 1982, Miocene volcanism and deformation in the western Cordillera and high plateaus of south-central Peru: Geological Society of America Bulletin, v. 93, p. 657-662.
Mégard, F., 1978, Etude Géologique des Andes du Pérou Central, Mémoire d'ORSTOM, Paris , p. 310
Mégard, F., 1984, The Andean orogenic period and its major structures in central and northern Peru: Journal of the Geological Society of London, v. 141, p. 893-900.
Moore, N.D., 1984, Potassium - Argon ages from the Arequipa Segment of the Coastal Batholith of Peru and their correlation with regional tectonic events: Journal of the Geological Society of London, v. 141, p. 511-519.
Mpodozis, C., Kay, S.M., Gardeweg, M., Coira, B., 1997. Geologı́a de la region de Valle–Ancho–Laguna Verde (Catamarca, Argentina): una ventana al basamento del extremo sur de la zona volcanica de los Andes centrales. VIII Congreso Geológico Chileno, Antofagasta, vol. 1, pp. 1689–1693.
Morgan, G.B., London, D., and Luedke, R.G., 1998, Petrochemistry of Late Miocene Peraluminous Silicic Volcanic Rocks from the Morococala Field, Bolivia: Journal of Petrology, v. 39, p. 601-632.
Naranjo, J., Cornejo, P., 1992, Hoja Salar de la Isla. Servicio Nacional de Geológ y Minera, Carta Geolgica de Chile No. 72.
Noble, D.C., Bowman, H.R., Herbert, A.J., Silberman, M.L., Heropoulos, C.E., Fabbi, B.P., and Hedge, C.E., 1975, Chemical and isotopic constraints on the origin of low-silica latite and andesite from the Andes of central Peru: Geology, v. 3, p. 501-504.
Noble, D.C., Farrar, E., and Cobbing, E.J., 1979, The Nazca Group of south-central Peru: Age, source, and regional volcanic and tectonic significance: Earth and Planetary Science Letters, v. 45, p. 80-86.
Noble, D.C., McKee, E.H., Eyzaguirre, V.R., and Marocco, R., 1984, Age and regional tectonic and metallogenetic implications of igneous activity and mineralization in the Andahuaylas-Yauri belt of southern Peru: Economic Geology, v. 79, p. 172-176.
Noble, D.C., McKee, E.H., Farrar, E., and Petersen, U., 1974, Episodic Cenozoic volcanism and tectonism in the Andes of Peru: Earth and Planetary Science Letters, v. 21, p. 213-220.
Ort, M.H., 1993, Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains: Journal of Volcanology and Geothermal Research, v. 56, p. 221-252.
Ort, M.H., Coira, B.L., and Mazzoni, M.M., 1996, Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes.: Contrib. Mineral. Petrol., v. 123, p. 308-322.
Pacheco, J.Z., Ramírez, V.F., 1996. Hoja Quetena 6127. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-40, Servicio Nacional de Geología y Minería.
Pacheco, J., Ramírez, V., 1997. Hoja Soniquera 6128. Carta Geológica de Bolivia, Escala 1: 100000, Publicación SGM Serie I-CGB-51, Servicio Nacional de Geología y Minería.
Paquereau-Lebti, P., Fornari, M., Roperch, P., Thouret, J.-C., and Macedo, O., 2008, Paleomagnetism, magnetic fabric, and 40Ar/39Ar dating of Pliocene and Quaternary ignimbrites in the Arequipa area, southern Peru: Bulletin of volcanology, v. 70, p. 977-997.
Petrinovic, I.A., Martí, J., Aguirre-Díaz, G.J., Guzmán, S., Geyer, A., and Paz, N.S., 2010, The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance: Journal of Volcanology and Geothermal Research, v. 194, p. 15-26.
Petrinovic., I.A., 1999, La caldera de colapso del cerro Aguas Calientes, Salta, Argentina, evolución y esquema estructural, in: F. Colombo, I. Queralt, I.A. Petrinovic (Eds.), Geología de los Andes centrales meridionales: El Noroeste Argentino, Acta Geológica Hispánica, vol. 34 (2–3), pp. 243–253.
Pichavant, M., Kontak, D.J., Briqueu, L., Herrera, J.V., and Clark, A.H., 1988, The Miocene-Pliocene Macusani Volcanics, SE Peru; II. Geochemistry and origin of a felsic peraluminous magma: Contrib Mineral Petrol, v. 100, p. 325-338.
Quang, C.X., Clark, A.H., Lee, J.K.W., Hawkes, N., 2005, Response of Supergene Processes to Episodic Cenozoic Uplift, Pediment Erosion, and Ignimbrite Eruption in the Porphyry Copper Province of Southern Peru: Econ. Geol., v. 100, p. 87-114.
Riller, U., Petrinovic, I., Ramelow, J., Strecker, M., and Oncken, O., 2001, Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes: Earth and Planetary Science Letters, v. 188, p. 299-311.
Roperch, P., Carlotto, V., Ruffet, G., and Fornari, M., 2011, Tectonic rotations and transcurrent deformation south of the Abancay deflection in the Andes of southern Peru: Tectonics, v. 30.
Roperch, P., Sempere, T., Macedo, O., Arriagada, C., Fornari, M., Tapia, C., García, M., and Laj, C., 2006, Counterclockwise rotation of late Eocene–Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the central Andes: Tectonics, v. 25, p. TC3010.
Rousse, S., Gilder, S., Fornari, M., and Semperé, T., 2005, Insight into the Neogene tectonic history of the northern Bolivian Orocline from new paleomagnetic and geochronologic data: Tectonics, v. 24.
Salisbury, M.J., Jicha, B.R., De Silva, S.L., Singer, B.S., Jimenez, N.C., and Ort, M.H., 2011, (40)Ar/(39)Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province: Geological Society of America Bulletin, v. 123, p. 821-840.
Sandeman, H.A.C., A.H.; Farrer, E., 1995, An Integrated Tectono-Magmatic Model for the Evolution fo the Southern Peruvian Andes (13°-20°S) since 55 Ma: International Geology Review, p. 1039-1073.
Schildgen, T.F., Ehlers, T.A., Whipp, D.M., van Soest, M.C., Whipple, K.X., and Hodges, K.V., 2009a, Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach: Journal of Geophysical Research: Earth Surface (2003–2012), v. 114.
Schildgen, T.F., Hodges, K.V., Whipple, K.X., Pringle, M.S., van Soest, M., and Cornell, K., 2009b, Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru: Tectonics, v. 28.
Schildgen, T.F., Hodges, K.V., Whipple, K.X., Reiners, P.W., and Pringle, M.S., 2007, Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru: Geology, v. 35, p. 523-526.
Schröder, W., and Wörner, G., Widespread Cenozoic ignimbrites in N-Chile, W-Bolivia and S-Peru (17°-20° S/71°-68° E): Stratigraphy, extension, correlation and origin: (Abstract), p. 4.
Schmitt, A.K., De Silva, S.L., Trumbull, R.B., and Emmermann, R., 2001, Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge: Contributions to Mineralogy and Petrology, v. 140, p. 680-700.
Schnurr, W.B.W., Trumbull, R.B., Clavero, J., Hahne, K., Siebel, W., and Gardeweg, M., 2007, Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W: Journal of Volcanology and Geothermal Research, v. 166, p. 17-46.
Seggiaro, R., and Aniel, B., 1989, Los ciclos piroclásticos del área Tiomayo-Coranzulí, Provincia de Jujuy: Revista de la Asociación Geológica Argentina, v. 44, p. 394-401.
Seggiaro R., 1994. Petrología, geoquímica y mecanismos de erupción del Complejo Volcánico Coranzulí. PhD Thesis. Facultad de Ciencias Naturales, Universidad Nacional de Salta. 137 pp.
Seggiaro, R., Becchio, R., Schnurr, W., Adelmann, D., Erpenstein, K., in preparation. Hoja 2569-IV, Antofalla, 1:250,000. Servicio Geológico Minero Argentino.
Siebel, W., Schnurr, W.B.W., Hahne, K., Kraemer, B., Trumbull, R.B., Bogaard, P.v.d., and Emmermann, R., 2001, Geochemistry and isotope systematics of small- to medium-volume Neogene-Quarternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources: Chemical Geology, v. 171, p. 213-237.
Soler, P., Bonhomme, M.G., 1987, Données radiochronologiques K-Ar sur les granitoides de la Cordillère Orientale du Pérou central: Implications tectoniques, Comptes Rendus de l'Académie des Sciences, Paris, 304 (no. 14) (1987), pp. 841–845 série II.
Soler, M.M., 2005, Caldera Vilama (Mioceno Superior): Su Estratigrafía, Evolución Magmática y Relación con Eventos Ignimbríticos Tempranos. Puna Argentina – Altiplano Boliviano. PhD Thesis. Universidad Nacional de Salta. 358 pp.
Soler, M.M., Caffe, P.J., Coira, B.L., Onoe, A.T., and Kay, S.M., 2007, Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene: Journal of Volcanology and Geothermal Research, v. 164, p. 27-53.
Soler, P., and Bonhomme, M.G., 1988, New K-Ar age determinations of intrusive rocks from the Cordillera Occidental and Altiplano of central Peru: Identification of magmatic pulses and episodes of mineralization: Journal of South American Earth Sciences, v. 1, p. 169-177.
Sparks, R.S.J., Francis, P.W., Hamer, R.D., Pankhurst, R.J., O'Callaghan, L.O., Thorpe, R.S., and Page, R., 1985a, Ignimbrites of the Cerro Galan caldera, NW Argentina: Journal of Volcanology and Geothermal Research, v. 24, p. 205-248.
Sparks, R.S.J., Francis, P.W., Hamer, R.D., Pankhurst, R.J., O'Callaghan, L.O., Thorpe, R.S., and Page, R., 1985b, Ignimbrites of the Cerro Galan caldera, NW Argentina: Journal of Volcanology and Geothermal Research, v. 24, p. 205-248.
Thouret, J.-C., Rivera, M., Wörner, G. , Gerbe, M.-C. , Finizola, A., Fornari, M. , Gonzales, K. , 2005, Ubinas: evolution of the historically most active volcano in Southern Peru, Bull. Volcanol., 67 (2005), pp. 557–589
Thouret, J.-C., Finizola, A., Fornari, M., Legeley-Padovani, A., Suni, J., and Frechen, M., 2001, Geology of El Misti volcano near the city of Arequipa, Peru: Geological Society of America Bulletin, v. 113, p. 1593-1610.
Thouret, J.C., Worner, G., Gunnell, Y., Singer, B., Zhang, X., and Souriot, T., 2007, Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru: Earth and Planetary Science Letters, v. 263, p. 151-166.
Tosdal, R.M., Farrar, E., and Clark, A.H., 1981, K-Ar Geochronology of the Late Cenozoic volcanic rocks of the Cordillera Occidental, southernmost Peru: J. Volcanol. Geotherm. Res., v. 10, p. 157-173.
Tosdal, R.M., 1978,The timing of the geomorphic and tectonic evolution of the southernmost Peruvian Andes, M.Sc. ThesisQueen's University, Kingston (1978), p. 138 (unpublished)
Vatin-Perignon, N., Poupeau, G., Oliver, R.A., La Venu, A., Labrin, F., Keller, F., and Bellot-Gurlet, L., 1996, Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa: Journal of South American Earth Sciences, v. 9, p. 91-109.
Wise, J.M., 2004. Geology of the Ayacucho Intermontane Basin, Central Peru, unpublished Ph.D. Thesis. University of Nevada, Reno, 203 p.
Wise, J., and Noble, D., 2008, Late Pliocene inception of external drainage and erosion of intermontane basins in the highlands of Central Perú: Revista de la Sociedad Geológica de España, v. 21, p. 73-91.
Wörner, G., Hammerschmidt, K., Henjes-Kunst, F., Lezaun, J., and Wilke, H., 2000, Geochronology (Ar-40/Ar-39), K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22 degrees S): implications for magmatism and tectonic evolution of the central Andes: Revista Geologica De Chile, v. 27, p. 205-240.
Wörner, G.U., D.; Kohler, I.; Seyfried, H., 2002, Evolution of the West Andean Escarpent at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time: Tectonophysics, p. 183-198.
Wörner, G., Lopez-Escobar, L., Moorbath, S., Horn, S., Entenmann, J., Harmon, R.S., and Davidson, J.D., 1992a, Variaciones geoquimicas, Locales y Regionales, en el frente volcanico cuaternario del los Andes Centrales (17°30´-22°00´S), Norte de Chile: Rev Geol Chile, v. 19, p. 37-56.
Wörner, G., Moorbath, S., and Harmon, R.S., 1992b, Andean Cenocoic volcanic centers reflect basement isotopic domains: Geology, v. 20, p. 1103-1106.
Wörner, G., Moorbath, S., Horn, S., Entenmann, J., Harmon, R.S., Davidson, J.D., and Lopez-Escobar, L., 1994, Large- and fine-scale geochemical variations along the Andean arc of northern Chile, in Reutter KJ, S.E., Wigger PJ, ed., Tectonics of the southern central Andes. Structure and evolution of an active continental margin.: Berlin, Springer, p. 77-92.
Zimmermann, J.-L., and Collado, A.K., 1983, Détermination par la Méthode K/Ar de l'âge des Intrusions et des Minéralisations Associées dans le Porphyre Cuprifère de Quellaveco (Sud Ouest du Pérou): Mineralium Deposita, v. 18, p. 207-213.